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Abstract. Monocular Human Pose Estimation (HPE) aims at deter-
mining the 3D positions of human joints from a single 2D image captured
by a camera. However, a single 2D point in the image may correspond
to multiple points in 3D space. Typically, the uniqueness of the 2D-3D
relationship is approximated using an orthographic or weak-perspective
camera model. In this study, instead of relying on approximations, we
advocate for utilizing the full perspective camera model. This involves
estimating camera parameters and establishing a precise, unambiguous
2D-3D relationship.
To do so, we introduce the EPOCH framework, comprising two main
components: the pose lifter network (LiftNet) and the pose regressor
network (RegNet). LiftNet utilizes the full perspective camera model to
precisely estimate the 3D pose in an unsupervised manner. It takes a
2D pose and camera parameters as inputs and produces the correspond-
ing 3D pose estimation. These inputs are obtained from RegNet, which
starts from a single image and provides estimates for the 2D pose and
camera parameters. RegNet utilizes only 2D pose data as weak supervi-
sion. Internally, RegNet predicts a 3D pose, which is then projected to
2D using the estimated camera parameters. This process enables RegNet
to establish the unambiguous 2D-3D relationship.
Our experiments show that modeling the lifting as an unsupervised task
with a camera in-the-loop results in better generalization to unseen data.
We obtain state-of-the-art results for the 3D HPE on the Human3.6M
and MPI-INF-3DHP datasets. More information on our project page:
https://github.com/CarstenEpic/epoch.

1 Introduction

There are two main approaches to monocular 3D human pose estimation (HPE)
from a single RGB images [18]. One class of algorithms uses a single-stage ap-
proach, where the aim is to regress the 3D position of human joints directly from
an image [38,39,45]. The other class of approaches use two distinct stages, where
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Fig. 1: (a) In human pose estimation, classical approaches perform a direct regression
of the 2D/3D joint location directly from an image. If the ground truth is available, the
camera parameters can be used/learned to refine the accuracy. (b) Lifting approaches
aim at retrieving the depth of each 2D joint to obtain the 3D pose. (c) We propose
a novel paradigm, directly estimating the 3D pose and the camera from images. The
2D pose can be calculated by applying the projection of the 3D coordinates to the
image space using the camera parameters. (d) Starting from the estimated 2D poses
and camera parameters, we perform the lifting to 3D, improving the performances with
respect to current approaches.

the first step is to infer 2D poses from monocular RGB images, which is followed
by a lifter network that predicts the 3D displacement for each of the 2D joints.
Two stage approaches typically outperform single stage approaches [57].

Estimating 3D human poses from a single RGB image is difficult as the prob-
lem is inherently ill-posed. For any 2D observation there exist multiple plausible
3D poses that will lead to the same 2D projection [33, 56]. Additionally, col-
lecting reliable ground-truth 3D data is difficult. Annotating 3D ground truth
on 2D images inevitably introduces inaccuracies, and collecting actual ground
truth requires a complex and expensive controlled environment using multi-view
camera systems or additional capture modalities. Even using multiple views, tri-
angulation can lead to errors, as there are inherent ambiguities in the position of
the joint under the body surface. While limited datasets providing 3D data are
available [17, 19], 2D datasets still provide more data in more general scenarios
and environments.

To address the ill-posed nature of the problem, past approaches have relied
on different strategies, like fully supervised training using either real [6, 44] or
synthetic 3D ground truth [26,28], weakly supervised training relying on multiple
views: either paired [47,51] or unpaired [50], 2D supervision [46], or video motion
consistency [10,15,16]. Unsupervised approaches have relied on cycle consistency
coupled with a weak perspective camera projection to lift 2D poses to 3D [2,49].
Relying on a weak perspective camera projection is not ideal because it does
not accurately capture the perspective transformation [14], leading to depth
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inaccuracy and scale ambiguity when projecting a 2D skeleton in the 3D space.
Recent works [23] have shown that using fully perspective cameras reduces this
ambiguity.

In this paper, we introduce EPOCH, a novel unsupervised framework that
effectively addresses the challenges of data scarcity by harnessing unsupervised
techniques and mitigates the inherent ill-posed nature of the problem through
explicit camera modeling, as shown in Fig. 1. Our approach stands out due
to its capability to estimate the full perspective camera parameters leveraging
only 2D human poses, without relying on any camera ground truth. We claim
that by incorporating the estimated camera into the 3D lifting operation, it is
possible to enhance the accuracy and the consistency of 3D unsupervised human
pose estimation while generalizing to unseen data. Our method consists of an
unsupervised 3D human pose lifter network (LiftNet) and a lightweight capsule-
based regressor network (RegNet) that estimates the camera pose and 2D joint
positions.

LiftNet performs the 3D lifting from estimated 2D poses and camera param-
eters. Inspired by [2], we employ a self-supervising cycle-consistent framework.
Unlike [2, 49], our approach uses a full perspective camera, allowing us to use a
wider range of camera transformations for supervision in our cycle consistency,
and improving the accuracy of the model.

We estimate the camera pose and 2D poses used as input for the lifting stage
using RegNet, a lightweight capsule-based regressor network that is trained on
weakly supervised 2D pose data instead of fully supervised data as [23]. It use
contrastive pre-training and heatmap-free joint position regression to estimate
the 2D poses as well as the intrinsic (the camera matrix [K]) and extrinsic
parameters (rotation matrix [R] and translation vector T ) of a camera based on
the standard pinhole camera model. To supervise the camera estimation with the
2D pose data we internally predict a 3D pose that is then projected to 2D with
the estimated camera. The internally predicted 3D pose is not quite as accurate
as the refined output of LiftNet but helps regularizing the camera estimation.

With no prior about 3D human appearance, both LiftNet and RegNet
estimate a single 2D projection which is not enough to guarantee a plausible
3D pose. Thus, we employ Normalizing Flows (NF) to ensure the plausibility
of multiple 2D projections of a single 3D estimate. Different from previous ap-
proaches [49], our NF is based on simple 1x1 convolutions [20], which can be
applied to the full feature representation of the poses, without the need to re-
duce their dimensionality using the Principal Component Analysis (PCA).

The EPOCH framework is the sequential combination of RegNet and Lift-
Net, which allows for the direct inference of accurate 3D poses from images.
RegNet estimates 3D poses with weak 2D pose supervision, while the camera
parameters are estimated without any ground truth camera data. LiftNet pre-
dicts 3D poses based on the estimates of 2D poses and camera poses. We argue
that RegNet is weakly supervised, whereas LiftNet is fully unsupervised as it
relies solely on estimates, without any ground truth data. This reasoning applies
to both poses and cameras.
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The novelty of our work can be summarized as:

– We define an innovative EPOCH framework to address the challenges of
data scarcity and the ill-posed nature of 3D HPE problem by harnessing the
full camera perspective projection, enabling the direct lifting of accurate 3D
poses from input images.

– We present LiftNet, a novel 3D unsupervised HPE framework that leverages
perspective camera projection to improve the accuracy of 2D pose lifting.

– We introduce an original capsule-based regressor, called RegNet, which
jointly estimates 3D joint positions and camera parameters. Final 2D joints
are computed using the estimated camera by perspective projection.

– We adopt a lightweight Normalizing Flows [20] model to enforce anthropo-
morphic constraints. Our NF accepts the entire 2D skeleton as input without
the need for dimensionality reduction using PCA.

– We obtain state-of-the-art results on both 3D HPE direct regression and 3D
unsupervised HPE on the common benchmark datasets Human3.6M and
MPI-INF-3DHP.

2 Related work

3D human pose estimation (HPE) from monocular 2D images has been exten-
sively researched through supervised, weakly-supervised, and unsupervised ap-
proaches [32, 57]. This section gives an overview of the different methods, also
focusing on the challenging in-the-wild approaches.

Fully supervised approaches. In this paradigm the 3D ground truth is
readily available. Gathering such data requires collecting vast datasets such as
Human3.6M [17], 3DPW [48], MPI-INF-3DHP [36] and CMU Panoptic [19]. In
supervised methods, two primary strategies exist: direct regression of 3D coor-
dinates from the image [38, 39, 45] (Fig. 1(a)), or 2D pose estimation followed
by lifting to 3D [5,52,53,58] (Fig. 1(b)). Direct regression proves more challeng-
ing because it involves the simultaneous estimation of 3D coordinates for each
joint, often leading to inferior results compared to lifting-based techniques [57].
Supervised networks achieve the best results on multiple datasets [5, 58], but
often struggle to generalize to different scenarios like out-of-distribution poses,
challenging camera angles and in-the-wild pose estimation [57].

Weakly-supervised approaches rely on the lifting framework [8, 15, 27,
30, 46, 47, 50, 51, 55] using various supervision signals without directly accessing
the 3D ground truth paired with the corresponding 2D image. For instance,
multiple paired or unpaired views of the same subject provide a supervision
signal, through the consistency of the estimated 3D pose seen from different
viewpoints [24,27,42,47,50,51]. In monocular approaches, temporally correlated
2D poses can be estimated from an input video and used as a supervision signal
for a frame-specific 3D pose estimation [15, 30, 55]. In-the-wild approaches have
mostly relied on 2D pose as ground truths to supervise intermediate 3D estimates
[12,54]. Other approaches perform monocular 3D pose estimation using only 2D
pose supervision [2, 9, 27,50].
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Following this line of work, our regressor network (RegNet) is a novel
weakly-supervised approach that uses 2D poses for supervision, computing the
3D to 2D projection via estimated camera parameters. Moreover, our approach
is the first that jointly estimates the full perspective camera parameters without
relying on any ground truth camera.

Unsupervised approaches. Unsupervised approaches usually rely on the
lifting paradigm, employing multiple different signals to regularise their 3D pre-
dictions. In [2], the authors proposed an unsupervised lifting network grounded
in closure and invariance properties, incorporating a geometric self-consistency
loss. The closure property for a lifted 3D skeleton means that, after random
rotation and re-projection, the resulting 2D skeleton will lie within the distri-
bution of valid 2D poses. The invariance propriety means that, when changing
the viewpoint of 2D projection from a 3D skeleton, the re-lifted 3D skeleton
should be the same. Following a similar concept [49] introduces a weak camera
projection to model the lift-reproject-lift process. The weak camera projection
is coupled with the elevation estimation of the camera, providing an approxima-
tion of the full camera perspective model. Moreover, they introduce the use of
Normalizing Flows (NFs) [7], which are used to ensure the closure property more
accurately than GAN-based methods [2]. In [13] a similar framework is extended
to a multi-person scenario, where relative positions are also used as supervision
signals.

Our lifter network (LiftNet) follows this line of work while introducing the
following novelties: (i) we employ a full perspective camera model for the pro-
jection, making it much more accurate and robust to varying focal lengths, (ii)
we drop the need for an additional elevation prediction branch in the lifting
network [49], (iii) we avoid applying the PCA to reduce data dimensionality by
training a normalizing flow based on Glow [20] instead of RealNVP, (iv) we add
a geometric constraint on unnatural joints folds.

3 Method

3.1 Preliminaries

Camera model. While many prior works for 3D human pose estimation rely
on simplified weak perspective camera models, we use a full perspective camera
model, consisting of intrinsic parameters K (focal length and center of projec-
tion) and extrinsic parameters R and T (rotation and translation of the camera
respectively). We transform a 3D point (X,Y, Z) into camera coordinates by
multiplying with the extrinsic and intrinsic matrices, and get the final image
space coordinates I = [u/w, v/w].

u
v
w


2D

= [K][R|T]


X
Y
Z
1


3D

(1)
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To invert the projection given image coordinates Ĩ, we need to estimate
the unknown depth w of the point. Similar to [31] we estimate the intrinsic
parameters directly from the full image size and the bounding box crop using
a model Ψ . While this is only an approximation of the real field-of-view of the
camera, prior work [21] has shown this to be a good approximation for most real
life cameras used. The estimated intrinsic camera matrix [K] includes the focal
length f = (fw, fh) and the principal point c = (cw, ch). Moreover, we estimate
a scaling factor s = (sw, sh) for the regularisation of the image size and skeleton
height. See Supplementary Materials for further details on model Ψ .

Normalizing flows loss. Normalizing flows (NFs) are a class of generative
neural networks capable of mapping a complex distribution into a simpler one
using invertible functions [22]. They are trained to learn the probability density
function (PDF) of a given dataset relying on an invertible function f . See Supple-
mentary material for further details about the modeling of this function. When
presented with a novel sample, NFs can estimate the likelihood (plausibility)
that the given sample belongs to the learned dataset distribution.

In [49], the learnable function f is based on RealNVP [7] which is not suitable
for high dimensional data like 2D poses, necessitating a PCA reduction of the
input vector x for an optimal convergence during training. In contrast, our NFs
are based on the Glow framework [20] relying on 1x1 convolutions. Small and
fast convolutions allow the use of the full 2D joints’ coordinates without the need
for a feature reduction as well as reducing the computational costs.

During the training of our architecture, the NFs are used to verify whether
multiple projections of 3D poses are all plausible 2D poses without relying on
multi-view data. To achieve this, we define the normalizing flow loss LNF , as
the negative log-likelihood of the PDF:

LNF (x) = −log(px(x)) (2)

N
A

I) II) III)

pl

PlPl

pl

dldl

Dl Dl

B

NN

pl

dl

Fig. 2: In (I), we define two vectors, denoted as A and B, connecting the spine and the
hip joints. The cross product of these vectors yields the normal vector N , which aligns
with the walking direction. In (II) and (III), we show the outcome of the dot product
between N and the proximal pl and distal dl components, resulting in their projections
Dl and Pl. In (II), Llimbs gives an output of 0, indicating a anthropomorphically
complaint prediction. In (III), Llimbs returns a positive value, signaling the need for
further correction.
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Anthropomorphic constraints. In supervised 3D HPE, the neural net-
work has explicit access to the 3D ground truth to learn the appearance of a
3D human pose. In unsupervised or semi-supervised settings, we introduce reg-
ularising losses to ensure that the estimated 3D poses respect anthropomorphic
constraints, such as proportional bone lengths and articulation angle limits.

As in [49], we use a bones ratio loss Lbone(y) to ensure that the ratio between
bones lengths of 3D pose y ∈ R3J are respected. This loss leverages the observed
nearly constant ratio between bones across different individuals [40], without
fixing the bone length to a pre-defined value.

Additionally, we define a novel Llimbs loss which ensures that joints like knees
and elbows do not bend in unrealistic manners (e.g. facing backward with respect
to the normal walking direction). It is defined as:

Llimbs(y) =
1

L

L∑
l

max(0, Pl −Dl) (3)

where L represents the number of limbs, Pl = N · pl and Dl = N · dl denote the
normal components of the proximal (pl) and distal (dl) components of each limb,
and N = A × B represents the normal vector for the plane defined by the hips
and spine joints. In Fig. 2 we show a visual representation of Llimbs to better
convey the intuitive reasoning behind its mathematical formulation.

3.2 Pose Lifter Network (LiftNet)

LiftNet is our lifter module which introduces the paradigm shown in Fig. 1(d).
The overall detailed architecture is shown in Fig. 3.

2D → 3D

2D → 3D

L2D Ldef L3D LNFLlimbsLbone

ŷ ŷr

inv

inv

3D → 2D

3D → 2D

x̂

ỹx̃ ỹr

x̂r

 [K]  [R|t]  [K]  [R|t]

 [K]  [R|t] [K]  [R|t]

Fig. 3: LiftNet architecture. The red (2D → 3D), orange (⟲ and ⟳) and yellow (3D →
2D) blocks describe the Lift, Rotate, Project operations respectively. The symbol x
denotes a 2D pose, y denotes a 3D pose. The decorator ˆ symbolizes a prediction in the
forward pass while ˜ marks a prediction in the backward pass. The subscript r stands
for rotated. The solid arrows describe the flow of the network, while the dashed arrows
connect each intermediate datum to its loss.
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LiftNet aims at retrieving the 3D pose y ∈ R3J , starting from a 2D pose
x̂ ∈ R2J and its estimated camera parameters [K] and [R|T ]. As shown in Fig. 3,
our architecture consists of a cycle consistency structure which can be split into
two symmetric branches: a forward branch (x̂ → Lift → ŷ → Rotate → ŷr →
Project → x̂r) and a backward branch (x̂r → Lift → ỹr → InverseRotate →
ỹ → Project → x̃). Each step and its input/output are described in Alg. 1.
The lift operation is performed by a lifter network while the projection is a
mathematical operation. Both of these operations rely on the full perspective
model using camera parameters [K][R|t]. All the losses provide self-supervision
to the cycle consistency, which does not access either 2D or 3D ground truths,
making it a fully unsupervised process.

Algorithm 1 Cycle consistency. Both 2D → 3D and 3D → 2D rely on the
camera parameters [K][R|t] to be solved.
Require: x̂, [K][R|t]

Forward branch
1. Lift : 2D → 3D: x̂ → ŷ
2. Rotate: ŷ → ŷr
3. Project : 3D → 2D: ŷr → x̂r

Backward branch
4. Lift : 2D → 3D: x̂r → ỹr
5. InverseRotate: ỹr → ỹ
6. Project : 3D → 2D: ỹ → x̃

Differently from previous approaches using the weak camera model [49], our
lifter leverages the full perspective camera model to recover the 3rd dimension
w for each input 2D pose x̂. Using the estimated w we can solve the inverse of
the projection of (Eq. 1) and recover the 3D joint positions. This Lift operation
is symbolized as 2D → 3D.

Given a 3D poses ŷ we can perform the Project operation symbolized as
3D → 2D. That means computing the 2D pose x̂ using the full camera projection
in Eq. 1.

Inspired by previous approaches [35,49], our lifter network consists of a sim-
ple MLP structure. The MLP receives as input a 2D pose x concatenated with
the flattened version the extrinsic parameters [R|t] (12 total values), the intrinsic
parameters f = (fw, fh), c = (cw, ch) and the scaling factor s = (sw, sh), result-
ing in a vector of size 2J + 18. The input vector is fed (I) to a linear layer to
obtain an embedded vector of size diml, (II) to 3 residual blocks each containing
2 fully connected layers, (III) to a linear layer to obtain the output vector of size
J representing the depth parameter w for each joint. The vector is concatenated
with the input x̂ resulting in the estimated 3D pose ŷ.

To train the LiftNet, we minimize the following loss:

Llift = L2D(x̂, x̃) + L3D(ŷr, ỹr) + LNF (x̃r) + Lbone(ŷ) + Llimbs(ŷ) + Ldef

(4)
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where:

– L2D(x̂, x̃) = ||x̂ − x̃||1 is the norm-1 distance between the initial prediction
x̂ and its version after the cycle consistency loop x̃;

– L3D(ŷr, ỹr) = ||ŷ − ỹ||2 is the norm-2 distance between the 3D pose ŷ and
its version after it has been projected and lifted ỹ;

– LNF (x̃r), Lbone(ŷ) and Llimbs(ŷ) are the losses defined in Sec. 3.1;
– Ldef is a deformation loss computed between two poses ya and yb belonging

to the same batch defined as

Ldef = ||(ŷa − ŷb)− (ỹa − ỹb)||2 (5)

which ensures that 2 poses from the same batch have not been deformed
in completely different manners by the same Project and Lift operations,
providing a supervision similar to the temporal consistency defined in [54],
but without relying on temporally-related data.

+ LNF
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 [K]  [R|t]

f, c, s

Σ

3D → 2D

3D → 2D

Sigmoid

a) b) c) d)

W

H

x̂r

x̂

σ̂
?

Ψ

Fig. 4: RegNet architecture. The W × H input image is fed to (a) a contrastive-
pretrained encoder and a separate module Ψ that estimates the intrinsic parameters.
The output features are then concatenated and (b) fed into our attention-based capsule
decoder. The outputs are three separate capsule vectors, representing an estimation of
the 3D pose ŷ, of the camera [K][R|t] and a joint presence vector Σ. (c) Each of the
outputs needs to be further processed before the loss computation. A copy of ŷ is
randomly rotated around the vertical axis, obtaining ŷr. ŷ and ŷr are projected into
the camera plane and Σ goes through a sigmoid activation function. (d) ŷ, x̂r, x̂ and
σ̂ are fed to the loss functions.

3.3 Pose Regressor Network (RegNet)

RegNet is our direct regression module (Fig. 1(c)) which is used to estimate the
camera pose and initial 2D pose used for the lifting stage. The overall detailed
architecture is shown in Fig. 4. The input to RegNet is a single square image
I of size W × H pixels, roughly centered on the pelvis similar to [2, 49, 54].
The objective is to retrieve the 2D pose x ∈ R2J . Additionally, it estimates the
intrinsic camera parameters K consisting of focal length f = (fw, fh), principal
point c = (cw, ch), and a scaling factor s = (sw, sh), as well as the extrinsic
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camera parameters R and t. The intrinsic camera parameters are estimated
directly from the image size as shown in [31].

RegNet consists of an encoder-decoder architecture, where the encoder is
pre-trained using contrastive learning and the decoder is based on capsules. The
output of the decoder yields both 3D poses and camera parameters, which are
then used to compute the 2D pose x ∈ R2J , with each joint represented as
[u/w, v/w] on the image plane I. It is worth noting that we employ 2D poses
for the loss computation, thus introducing a form of weak supervision to the 3D
pose estimation process.

Contrastive Encoder. Our encoder employs a ResNet50 pre-trained using
contrastive learning on ImageNet as in [1]. Despite its general image focus, the
use of contrastive learning allows for faster convergence and better generaliza-
tion, outperforming supervised pre-training methods [3].

The output vector of the encoder is concatenated with the intrinsic param-
eters [K] that are estimated directly from the full image. The vector resulting
from the concatenation of size dim is given as input to the decoder.

Capsule-based decoder. In [25], they first showed how a Soft Attention
mechanism can be effectively used to split a feature vector in different capsule
features. In [43], they perform an equivalent operation with a fully connected
and a Softmax layer. Inspired by [43], we design our capsule-based decoder using
a Conv2D fully connected layer to transform the latent space vector of size dim
to a vector of size 9× J .

Given J values used for the attention mechanism, the remaining 8×J values
are divided in the following capsules:

– ŷ ∈ R3J , representing the estimated 3D pose;
– Γ ∈ R3J from which we can compute [R|t] representing the extrinsic param-

eters, namely the estimated rotation matrix R and translation vector t with
respect to the input image’s viewpoint. The mathematical calculations to
derive [R|t] from Γ are reported in the Supplementary Materials. To ensure
invertibility, an orthogonality constraint is enforced on the rotation matrix
[R]. The extrinsic parameters are combined with the intrinsic camera ma-
trix [K] computed by Ψ at the encoding stage to obtain the full perspective
camera model descriptor [K][R|t];

– Σ ∈ R2J , a vector indicating the presence of each joint. Low values indicate
uncertain detection of joints, often due to occlusions or joints being outside
the image space.

Outputs. To ensure that the estimated 3D pose is plausible from multiple
viewpoints, we require both the 2D pose x̂ of the original image I, as well as the
2D pose x̂r corresponding to the same pose from a different viewpoint.

For x̂, we perform the Project operation as used in the lifting architecture to
obtain 2D pose x̂ using the full camera projection in Eq. 1 given the 3D pose ŷ.

Similar to the lifting stage, we observed that we can increase the accuracy of
the estimated 3D poses by using a Normalizing Flow loss to ensure the plausi-
bility of multiple 2D projections of the 3D pose seen from different viewpoints.
To this end we also calculate a rotated projection x̂r, where we rotate the model
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around the vertical world axis. The Rotate operation is applied randomly to
each 3D pose in the range of [10◦, 350◦] to simulate a viewpoint change, before
projecting the rotated 3D pose ŷr to obtain x̂r.

Regression of the joints’ position can be combined with an uncertainty mea-
sure and leads to better results when compared to direct regression of joints
and heatmap-based methods [29]. Moreover, the regression is more computation
and memory efficient compared to heatmaps. To employ a similar method, we
estimate the deviation σ̂ of the predicted joint’s position from the ground truth
by applying a sigmoid function on the estimated presence capsule Σ.

Losses. To train RegNet, we need to minimize the following loss:

Lreg = Lbone(ŷ) + Llimbs(ŷ) + LNF (x̂r) + LRLE(x̂, σ̂) (6)

where:
– LNF (x̃r), Lbone(ŷ) and Llimbs(ŷ) are the losses defined in Sec. 3.1;
– LRLE(x, I) is the residual log-likelihood estimation loss defined as,

LRLE(x, I) = −logPΘ,ϕ(x, I)|x=x̂ = −logPϕ(x̂) + log(σ̂) (7)

As in [29], this loss aims at estimating the joints’ position x̂ via direct regres-
sion coupled with the learned error distribution σ̂. We refer to the original
work [29] for the full mathematical explanation of the loss.

For further details on loss balancing during training see the Supplementary
Materials.

4 Results

We perform our experiments on the common Human3.6M [17] and MPI-INF-
3DHP [36] datasets‡ . We follow standard test protocols for both datasets [49].
We also report extensive ablation studies and qualitative results on the unseen
3DPW dataset [48] to demonstrate generalization.

Implementation details. The input images are of size H = 224 and W =
224. The skeleton model has J = 17 joints. RegNet is trained for 45 epochs
using the optimizer AdamW [34], dim = 2048+6, learning rate 1e−3, and weight
decay 1e − 4. LiftNet is trained for 100 epochs using the optimizer AdamW,
learning rate 2e − 4, and weight decay 1e − 5. Both RegNet and LiftNet are
trained with batch size 256 and bfloat16 precision on single a NVIDIA RTX
3090. Inference runs on the same GPU at ≈ 45 fps.

Metrics. We adopt the standard mean per joint position error (MPJPE)
in two common forms for the 3D HPE unsupervised settings: the PA-MPJPE
where reconstructed 3D pose is Procrustes aligned and the N-MPJPE where the
3D pose is normalized the same scale as the ground truth [41]. As in [49], for the
MPI-INF-3DHP dataset we report the scale normalized percentage of correct
key points (N-PCK) predicted within 150 mm to the original position and its
corresponding area under curve (AUC).

‡All datasets were obtained and used only by the authors affiliated with academic
institutions.
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Supervision Method PA-MPJPE↓N-MPJPE ↓

Full-3D Pavalkos [38] 41.8 -

10%-3D
Kundu [28] 49.6 59.4
Kundu [26] 48.2 57.6
Gong [11] 39.1 50.2

Multi-view
Rhodin [41] 98.2 122.6
Kundu [27] 85.8 -
Usman [47] 44.0 55.0

Full-2D
Fish [9] 97.2 -

Kundu [27] 62.4 -
Ours (RegNet) 45.4 69.9

Table 1: Quantitative results for di-
rect regression from images on Hu-
man3.6M.

Supervision Method PA-MPJPE↓ N-MPJPE↓

Full Martinez [35] 37.1 45.5

Weak

Fish [9] 79.0 -
Wandt [50] 38.2 50.9
Drover [8] 38.2 -
Kundu [28] 62.4 -

Multi-view Kocabas [24] 47.9 54.9
Wandt [51] 51.4 65.9

Unsupervised

Chen [2] 58.0 -
Yu [54] 42.0 85.3

Wandt [49] 36.7 64.0
Ours (LiftNet) 30.7 50.8

Table 2: Quantitative results for lift-
ing from 2D ground truth on Hu-
man3.6M.

Method Backbone PA-MPJPE↓ N-MPJPE↓

Chen [2] SH [37] 68.0 -
Wandt [50] SH [37] 65.1 89.9
Kundu [27] ResNet-50 63.8 -
Kundu [27] ResNet-50 62.4 -

Yu [54] CPN [4] 52.3 92.4
Wandt [49] CPN [4] 50.2 74.4

Ours (LiftNet) Ours (RegNet) 43.8 67.1

Table 3: Quantitative results for lifting
from 2D predictions on Human3.6M.

Supervision Method 2D Input PA-MPJPE↓ N-PCK↑ AUC↑

Weak Kundu [27] GT 93.9 84.6 60.8

Unsup.

Yu [54] GT - 86.2 51.7
Wandt [49] GT 54.0 86.0 50.1

Ours (LiftNet) Pred 46.8 93.6 61.3
Ours (LiftNet) GT 33.6 97.6 69.5

Unseen data Ours (LiftNet) Pred 57.3 77.5 46.4

Table 4: Quantitative results for 3D
HPE on MPI-INF-3DHP.

4.1 Quantitative results

Direct regression from images. In Tab. 1, we report the results of weakly-
supervised direct regression of 3D pose from images on Human3.6M dataset.
Weakly-supervised approaches include ones using only a small portion of 3D an-
notated data (10%-3D) or multi-view supervision. Both approaches rely on 3D
spatial information for their supervision, leading to results close to the baseline
fully supervised approach [38]. Among approaches using only 2D information,
our RegNet outperforms others, obtaining results in line with baseline 3D su-
pervised. In contrast to the previous approaches, RegNet also performs the
unsupervised estimation of the full perspective camera parameters [K][R|t].

Lifting from 2D ground truth (GT). In Tab. 2, we report the results of
lifting GT 2D pose to 3D on Human3.6M dataset. We compare against baseline
fully supervised approaches [35], multi-view supervised approaches [24, 51], and
weakly supervised approaches adopting different strategies like domain adapta-
tion [28], 2D GT poses [8,9] and partial 3D GT [50]. Our unsupervised LiftNet
outperforms all previous weakly supervised approaches, also obtaining the best
results among unsupervised methods. We also outperform [49] which adopts a
weak perspective camera modeling combined with elevation estimation, demon-
strating the efficacy of our LiftNet that explicitly leverages the full perspective
camera model.

Lifting from 2D predictions. In Tab. 3, we report the results of lifting
2D pose predictions to 3D on the Human3.6M dataset. In contrast to other
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Backbone LNF Lbone Llimbs PA-MPJPE↓ MPJPE↓

S ✓ ✓ ✓ 60.1 82.7

✗ ✓ ✓ 239.2 342.8
✓ ✗ ✓ 49.1 71.4
✓ ✓ ✗ 48.3 70.9C

✓ ✓ ✓ 45.4 69.9

Table 5: Ablation study for Reg-
Net. The last row corresponds to our
full model. S = Supervised. C = Con-
trastive.

Camera
model LNF Lbone Ldef Llimbs L2D L3D PA-MPJPE↓ MPJPE↓

W ✓ ✓ ✓ ✓ ✓ ✓ 47.7 84.9

✗ ✓ ✓ ✓ ✓ ✓ 232.6 293.0
✓ ✗ ✓ ✓ ✓ ✓ 41.5 56.4
✓ ✓ ✗ ✓ ✓ ✓ 41.3 55.8
✓ ✓ ✓ ✗ ✓ ✓ 40.9 54.9
✓ ✓ ✓ ✓ ✗ ✓ 40.1 54.3
✓ ✓ ✓ ✓ ✓ ✗ 39.5 53.4

F

✓ ✓ ✓ ✓ ✓ ✓ 30.7 50.8

Table 6: Ablation study for LiftNet.
The last row correspond to our com-
plete model. W = Weak perspective
camera. F = Full perspective camera.

unsupervised approaches that use either ResNet50 [27], Stacked Hourglass (SH)
[2, 50] or Cascaded Pyramid Network (CPN) [4, 49] as the backbone to extract
2D predictions to be lifted, we use RegNet which also provides an unsupervised
estimation of the camera parameters. The full EPOCH approach combining both
RegNet and LiftNet outperforms all other methods, demonstrating its efficacy
as an end-to-end approach to estimate 3D poses from images.

Generalising to unseen data. In Tab. 4, we report the results of 3D HPE
on MPI-INF-3DHP dataset. When trained on MPI-INF-3DHP, LiftNet out-
performs both weakly-supervised [27] and unsupervised [49, 54] lifting methods
starting from either the ground truth or from poses predicted by RegNet. When
not trained on MPI-INF-3DHP (last row), EPOCH trained only on Human3.6M
achieves results comparable to fine-tuned approaches, proving its ability to gen-
eralize to unseen data.

Ablation studies. In Tab. 5, we report the results of the ablation study for
RegNet. First, we show how using a backbone trained with supervised learning
(S) leads to poorer features (first row), leading to performance degradation com-
pared to the full model trained with contrastive learning (C) (last row). Next,
we ablate different losses, showing how LNF is the loss that causes the biggest
drop in performances since it ensures the network does not estimate 3D poses
that are plausible only from a single viewpoint. Lbone and Llimbs have similar
effect on the results as they both enforce anthropomorphic constraints.

In Tab. 6, we report the results of the ablation study for LiftNet. We perform
an ablation study on the camera modeling, showing how using a weak perspec-
tive camera leads to performance degradation due to its less precise modeling of
the 2D/3D relation than the full perspective camera. Moreover, we proceed to
study the effect of each loss on the performances. As for RegNet, LNF causes
the biggest drop in performances. The deformation Ldef , and the two anthro-
pomorphic constraints Lbone and Llimbs have similar effects on the numerical
results, as they are all enforcing comparable constraints on the deformation and
proportions of 3D poses. L2D and L3D all provide regularisation between differ-
ent stages of the cycle consistency, so removing one of them has a comparable
effect on the performance’s degradation, since LiftNet is still regularised by the
remaining ones.
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Fig. 5: EPOCH qualitative results on MPI-INF-3DHP [36] (columns 1, 2, 3, 4),
3DPW [48] (columns 5, 6). Rows: input images, RegNet output, LiftNet output
(front and side view). Our method can generalize to unseen in-the-wild data (3DPW)
even if only trained on Human3.6M data.

4.2 Qualitative results

Fig. 5 shows our qualitative results on challenging poses for Human3.6M and
MPI-INF-3DHP. Even in the presence of occlusions and rare poses (e.g. sitting
on a chair, lying on the floor with crossed legs), both RegNet and LiftNet
obtain visually plausible 3D poses. Moreover, we display results on 3DPW which
is unseen at training time. Even if the scale of the 3D pose is different, we still
obtain plausible poses from challenging images, demonstrating the ability of our
EPOCH approach to generalize to unseen scenarios.

5 Conclusions

In this paper, we presented EPOCH, a novel framework that jointly estimates the
3D pose of cameras and humans consisting of LiftNet and RegNet. LiftNet
performs the unsupervised 3D lifting starting from estimations of both 2D poses
and camera parameters. To address the unavailability of camera parameters in
real world scenarios, we design RegNet, a novel human pose regressor that can
jointly estimate 2D and 3D poses as well as perspective camera parameters using
weak 2D pose supervision. We show that an estimated full perspective camera
allows us to substantially improve the unsupervised 3D human pose estimation
accuracy and consistency over state-of-the-art results. By estimating the camera
only from 2D poses without any 3D or camera ground truth, we can generalise
to unseen data, making a step forward towards fully unsupervised 3D HPE in-
the-wild.
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